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ABSTRACT

Chemical transport in porous media has been
studied experimentally via a novel nonintrusive
fluorescence imaging technique. The technique
involves 3D visualization and quantification of
chemical concentration fields within a refractive
index-matched transparent porous system. The
system consists of a porous column packed with
spherical beads and a refractive index-matched
fluid flowing through the column at a steady state.
A fluorescent organic dye is steadily introduced into
the flow at the bottom of the column and allowed to
migrate through the medium. The refractive index-
matching yields a transparent porous medium, free
from any scattering and refraction at the solid-
liquid interfaces, as a result allowing direct optical
probing at any point within the porous system. By
illuminating the flow within the column with a
planar sheet of laser beam, chemical transport
through the porous medium can be observed
microscopically, and qualitative and quantitative
in-pore transport information can be obtained at a
good resolution. A CCD camera is used to record the
fluorescent images at every vertical plane location
while sweeping back and forth across the column.
These images are then analyzed and accumulated
over a 3D volume within the column. Three-
dimensional concentration fields have been
determined successfully within the system. This
paper reports on 3D observations of chemical

concentration changes with time at the pore-scale
level within the porous medium.

INTRODUCTION

The present paper reports on an experimental
effort to improve our understanding of
chemical/contaminant transport in soils and other
porous media by investigating the transport at the
microscopic spatial scale.

Previous experimental investigations (Harleman
and Rumer 1963, Hassinger and VVon Rosenberg 1968,
Klotz et al. 1980, and Han et al. 1985) have
provided some valuable information on the
macroscopic behavior of the flow and transport in
porous media. Even though, many bulk transport
phenomena result from the flow behavior at the
microscopic spatial scale, until recently, little work
has been done on the microscopic characterization of
processes at the pore-scale. This can be attributed to
the experimental difficulty of nonintrusively
measuring flow and transport at high resolutions
within the solid matrix. Recent experimental
improvements have allowed some investigations of
pore-scale processes. These include studies using
certain forms of noninvasive optical techniques
(P1V, NMRI) in and above packed beds for velocity
and porosity measurements (Stephenson and
Stewart 1986, Bories et al. 1991, Saleh et al. 1993,
Li et al. 1994, and Derbyshire et al. 1994) and
studies in surrogate media composed of two-
dimensional etched glass or capillary network



micromodels (Soll et al. 1993, Soll and Celia 1993,
and Wan and Wilson 1994).

Theoretical descriptions of flow and transport in
porous media have been generally derived from
simpler "bulk" equations of mass and momentum
balance or from more systematic approaches in
which pore-scale behavior is rigorously averaged
over representative elementary volume (REV) of
the medium. The works of Whitaker (1967, 1969),
Slattery (1967, 1972), Bear (1972), Gray (1975),
Hassanizadeh and Gray (1983), and Gray et al.
(1993) are representative of the current approach in
this field. While each model presents a slightly
different point of view, all require some
assumptions about a specific medium behavior that
must be confirmed and parameterized by detailed
experimental work.

The present work is part of an extensive research
in our laboratory to understand the microscopic
transport processes within porous media (Peurrung
et al. 1995). We have developed a novel
nonintrusive imaging technique to observe pore-
scale behavior at a high resolution and a high
accuracy. The paper presents some of the
interstitial concentration results obtained using our
technique. The overall objective is to use these
results and future findings toward understanding of
chemical transport through a porous medium and, as
a result, provide the basis for realistic modeling of
chemical/contaminant transport in natural or
commercial porous systems.

EXPERIMENTAL FACILITIES

Figure 1 shows the detail of experimental setup
and measurement techniques. Experiments were
performed in a clear polymethylmethacrylate
(PMMA) cylindrical packed column 4.5 cm in
diameter and about 23.5 cm in length. The column
was filled uniformly with PMMA spherical beads
of 3.1 mm. A mixture of silicone oils (Dow Corning
550 and 556) was chosen as the fluid which matched
the beads' refractive index of 1.4885 at 19.8°C and a
wavelength of 514.5 nm. The column was
maintained at this temperature throughout all runs
by being immersed in a circulating constant
temperature bath. A syringe pump was used to
provide a constant volumetric flow rate of the above

fluid at 1.15 cm3/min.

The experiments were done with the refractive
matched fluid seeded with an organic fluorescent
dye for concentration measurements. The column
was illuminated by an Argon-ion laser (coherent)

operated at 475 nm for velocity measurements and
488 nm for concentration measurements. A CCD
camera was used to record the experimental runs.
Since, the dye emission peaks around 514.5 nm, a
band pass filter was used on the video camera to
pass a narrow range of 514.5 nm £ 5 nm wavelength
associated with the dye excitation. The video
camera was placed perpendicular to the laser
propagation beam on a remotely operated platform
such that it moved with the beam in order to scan
various cross-section of the column.

The refractive index-matching vyielded a
transparent porous medium, free from any scattering
and refraction at the solid-liquid interfaces, thus
allowing direct optical probing at any point within
the porous system. In these experiments, a neutrally
buoyant dye was steadily introduced into the
column and its concentration was imaged by
sequentially scanning the concentration fields in
vertical cross-sections. The video camera recorded
fluorescence images at every vertical plane location
while sweeping back and forth (with the
illumination plane) across the column at every
minute.

The experimental runs were recorded through the
video camera by a computer controlled VCR (Sony,
EVO0-9650) in Hi-8 mm format. The VCR was a
frame accurate model that produced high quality
still images of specified frames. It was computer
controlled through an RS-232 interface for
automated concentration analysis. In order to
capture the recorded images for data analysis, a
frame grabber board (ITI PC Vision Plus) with 640
by 480 pixel resolution was used in conjunction with
an IBM compatible 486-33 computer. The image
analysis was done using the OPTIMAS (BioScan)
software. Several detailed programs were
developed as interface softwares for automated
experimental run and analysis softwares for
concentration measurements. In order to evaluate
the uncertainty in the measurements a test run was
performed. The uncertainty in the values of
concentration was about 5% at 95% confidence level
for 200 frames analyzed (see Rashidi and Banerjee
1988).

RESULTS

Experiments were carried out, in which a dye
front was injected into the porous system for
concentration measurements. Experimental data
were collected over a three-dimensional volume
within the column by scanning the illumination



plane across that region. As previously described,
the camera and laser sheet were placed on a
platform that moved back and forth at a controlled
speed for scanning the column. During the
experiment which lasted about 120 minutes, up to
60,000 individual measurement points of
concentration were collected each minute
(corresponding to 22 vertical slices). This resulted
in an enormous amount of experimental data within
the porous medium. The collected data were later
placed in three dimensional arrays that could be
presented in a 3D fashion.

As shown in Figure 2, once these sliced results are
assembled into volumetric arrays, the data can be
sampled in various ways to determine different
attributes of the overall flow field. Figure 3 shows
3D plots of concentration distributions as a function
of time within the porous medium. Here, the values
of concentrations are nondimensionalized by the
saturated concentration values and the flow
direction is from bottom to top. Furthermore,
smaller values of concentration (less than 0.1) are
masked out in order to show the high concentrated
regions. As seen in this figure, the porous medium
becomes saturated as the experiment continues and
the detail of transport phenomena can be observed
dynamically. These plots show the enormous
amount of chemical transport information that can
be derived from the microscopically measured data.
This information can be used to derive sound
theoretical transport models or to check the
prediction of the existing transport models.

CONCLUSIONS

Chemical transport in porous media has been
visualized and measured microscopically using a
unique nonintrusive fluorescence imaging technique.
The test section consists of a porous column packed
with spherical beads and a refractive index-
matched fluid. The system is automated to image
through the porous medium for collecting
microscopic values of concentration. Experiments
were carried out in which a dye front was injected
into the porous system and its dispersion was
tracked. Concentration values were obtained in a
full three-dimensional volume of the test section at
a good accuracy and a high resolution of up to 60,000
measurement points for a given time. These
measurements show the dynamic detail of transport
processes within porous geometries as the system
becomes saturated.
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Figure 1. Experimental setup and measurement apparatus.
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Figure 2. Data representation in form of vertical slices, horizontal discs, and cylindrical pucks of varying radius.
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Figure 3. 3D plots of non-dimensionalized concentration distributions as a function of time in the porous medium.
Here, smaller values of concentrations are masked out at each time. Flow direction is from bottom to top and
concentrations are non-dimensionalized by saturated concentration values.
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